
Trans-ABySS 1.4.8 User Manual

Last updated:
September 16, 2013

Written by:
Readman Chiu <rchiu@bcgsc.ca>
Ka Ming Nip <kmnip@bcgsc.ca>

Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency
Vancouver BC Canada V5Z 4S6

Please direct your questions, suggestions, bug reports, and feature requests to our
Google Group at: <trans-abyss@googlegroups.com>

mailto:rchiu@bcgsc.ca
mailto:trans-abyss@googlegroups.com
mailto:kmnip@bcgsc.ca

Generating Assemblies with ABySS

The input to Trans-ABySS is one or more ABySS assemblies. ABySS can be compiled
as described in the README for ABySS (http://www.bcgsc.ca/downloads/abyss/doc/).
Should you run into any difficulties in compiling or running ABySS, please contact the
ABySS Google Group at:
<abyss-users@googlegroups.com>

Trans-ABySS supports 4 types of libraries, each of which has its own assembly
protocol:

1. Transcriptome
i. assemble contigs at multiple k-mer values with reads

2. Genome
i. assemble the unitigs at 2 k-mer values with reads
ii. assemble the unitigs at a higher k-mer value than those from (i) with

reads and unitigs from (i)
iii. assemble contigs at the same k-mer value from (ii) with reads and

unitigs from (ii)
Alternatively, you may simply create one paired-end assembly using only one
k-mer value. Although simpler, you may risk losing contigs for some events.

3. Targetted Genome
i. align reads to reference genome
ii. assemble contigs at multiple k-mer values with reads aligned to

region(s) of interest
This is particularly useful when a subset of your dataset is interesting because
the runtime is relatively short compared to assembling the whole genome.

4. Strand-Specific Transcriptome
i. align reads to reference genome
ii. divide the reads into 3 batches based on the alignment orientation:

(a) plus strand fragments,
(b) minus strand fragments,
(c) unknown strand fragments

iii. assemble 2 sets of contigs at multiple k-mer values:
set 1: using reads from batches (ii.a) and (ii.c)
set 2: using reads from batches (ii.b) and (ii.c)

Currently, TA provides limited support for this protocol. You may run the
regular transcriptome pipeline on your strand-specific transcriptome libraries.

mailto:abyss-users@googlegroups.com
http://www.bcgsc.ca/downloads/abyss/doc/

Installing Trans-ABySS

The TA package consists of the following files and directories:

bin/
setup.sh
check-prereqs.sh
configs/
input/
annotations/
utilities/
analysis/
gsc/
sample_dataset/

bin/
TA requires the following external software packages:
Software Version Purpose with respect to TA
ABySS 1.3.5+ Assembler for multiple-kmer assemblies.

TA stage FEM.
bwa 0.7.4+ Aligner of reads to merged assembly.

Aligner of contigs to reference genome for genome
libraries.

GMAP 2012-12-20
or later

Aligner of contigs to reference genome for transcriptome
libraries

BLAT v .34+ Aligner of contigs for the candidate events
SAMtools 0.1.18 Utilities to work with alignments in SAM format.
Python 2.7 Interpreter for all wrappers and analysis modules in TA.
Pysam 0.6+ Python interface for SAMtools.
BioPython 1.52+ Python API for in silico cDNA sequence to amino acid

sequence translation.
Java 1.6+ Running Picard tools SamToFastq
Picard 1.73+ Use SamToFastq to convert SAM/BAM files to FASTQ files.

It is recommended to put or sym-link the executables of the above software in TA’s
bin directory. Alternatively, you may export the paths in setup.sh.

setup.sh
The setup file defines all environment variables required by TA. Typically, this
command is included in nearly all job scripts created by TA:

source /your/path/to/setup.sh

Content of setup.sh:

export TRANSABYSS_VERSION=1.4.8
export TRANSABYSS_PATH=/your/transabyss/path
export PYTHONPATH=/your/python/path:$TRANSABYSS_PATH:$PYTHONPATH
export ABYSSPATH=/your/abyss/path
export PICARD_DIR=/your/picard/path
export PATH=$TRANSABYSS_PATH/bin:$ABYSSPATH:$PYTHONPATH:$PATH

Please configure setup.sh by giving each environment variable the correct path(s).
check-prereqs.sh
Once you have installed the required software and have configured setup.sh, you
may run check-prereqs.sh to check if the paths of the required tools are found.

configs/
configs/transcriptome.cfg
This file contains the majority of the configurations for the transcriptome pipelines in
TA. It has the following major sections:

• [commands]
This section contains the default commands for running each module.

• [memory]
This section contains the default memory and CPU request for cluster jobs.

• [genomes]
This section contains the paths to your reference genomes.

• [tmpmem]
This section contains the default space request for temporary directories used
in cluster jobs.

• [java]
This section contains the java options used for each java package.

TA processes data on a per-library basis. Each library must belong to only one
project, but each project is expected to have multiple libraries. In
transcriptome.cfg, a project should be set up a new section. Each project must
have a working directory and a reference genome, which are specified in topdir and
reference respectively. For example:

[your_project_name]
topdir: /your/transabyss/working/directory/for/this/project
reference: /name/of/the/reference/genome/configured/in/"[genomes]"/section
abyss-rmdups-iterative-cmd: -n ${LIB} -i ${INPUT_DIR} -o ${OUTPUT_DIR} -r $
{READLENGTH} -k ${K} -t 12
abyss-rmdups-iterative-mem: 3G,12
bwa_sam-tmpmem: 60G
samtofastq.jar-java: java -XX:-UseGCOverheadLimit –Xmx10g

You may override the defaults for processing each project with the postfixes -cmd,
-mem, -tmpmem, -java for the sections for command, memory, tmpmem, and java
respectively. As shown here, abyss-rmdups-iterative was configured use 12 threads
and run on 12 CPUs and allocate 3G for each CPU (to a total of 36G available
memory).

configs/genome.cfg

This configuration file serves the same purpose as transcriptome.cfg except it is
used for the genome pipelines.

configs/model_matcher.cfg
This configuration file specifies the gene model files that are used by the module
model_matcher.py for contig-transcript mapping.

Content of model_matcher.cfg:

[hg19]
k: knownGene_ref.txt
e: ensGene_ref.txt
r: refGene.txt
a: acembly_ref.txt
order: k,e,r,a

You should set up one section for each reference genome you use in TA. The gene
model files referenced in each section are expected to be found in the annotations
directory. See “annotations" for instructions on downloading annotation files. Each
gene model file is assigned an alias for quick referencing. For example, e represents
the Ensembl gene model file while r represents the Refseq gene model file. These
aliases should be arranged in a comma-separated list in the order field from highest
priority to lowest priority. Priority set here will be used in breaking ties when a contig
can be mapped to genes from multiple models.

configs/job_script.cfg
This configuration file contains the configurations for job submissions.

Content of job_script.cfg:

local: gsc_local.txt
cluster_basic: gsc_sge_basic.txt
cluster_parallel: gsc_sge_parallel.txt
cluster_basic_array: gsc_sge_basic_array.txt
cluster_parallel_array: gsc_sge_parallel_array.txt
predecessors_list_delimiter: ,
run_local_job_command: bash
submit_cluster_job_command: qsub
submit_cluster_job_return_string: Your job ${JOBID} .* has been submitted
submit_cluster_array_job_return_string: Your job-array ${JOBID}\..* has been
submitted

• local defines the template for local jobs.
• cluster_basic defines the template for basic (single CPU) cluster jobs.
• cluster_parallel defines the template for parallel (multiple CPUs) cluster jobs.
• cluster_basic_array defines the template for basic array cluster jobs.
• cluster_parallel_array defines the template for parallel array cluster jobs.
• predecessors_list_delimiter defines the delimiter for the list of predecessors

for each job.
• run_local_job_command defines the command to run local jobs.

• submit_cluster_job_command defines the command to submit batch jobs.
• submit_cluster_job_return_string defines the string returned when batch

jobs are submitted. This string is used for retrieving the job id from a batch job
submitted with the submit_cluster_job_command. ${JOBID} corresponds to the
part the string representing the job id. You may use Python’s regular
expressions (http://docs.python.org/library/re.html) in this string.

• submit_cluster_array_job_return_string defines the string returned when
array jobs are submitted. Its purpose is same as
submit_cluster_job_return_string.

configs/templates/
We use job script templates to simplify the process of setting up batch job submission
of TA jobs in different HPC environment. Although our templates were written to work
with the Sun Grid Engine of our cluster, you can create your own templates for your
HPC environment.

The following variables in templates would be replaced with the appropriate values
when job scripts are generated:

• ${JOB_NAME} is the name of the job.
• ${WORKING_DIR} is the working directory of the job.
• ${LOG_DIR} is the directory for the stdout and stderr logs.
• ${PREDECESSORS} is the list of predecessors’ job id. Note that

predecessors_list_delimiter from jobs_script.cfg would be used here.
• ${MEM} is the amount memory (RAM) to request for the job.
• ${QUEUE} is the list of cluster queues for the job.
• ${THREADS} is the number of CPUs for the parallel job.
• ${FIRST_TASK_ID} is the first task id for the array job.
• ${LAST_TASK_ID} is the last task id for the array job.
• ${TMPMEM} is the amount of temporary disk space to request for the job.
• ${SETUP_PATHS} would be replaced with the command,

source /path/to/setup.sh

• ${CONTENT} is the commands to be run in the job. This variable is mandatory for
all templates.

The following variables must be defined properly:
• $TMPDIR is the prefix for temporary files. Typically, the scheduler of your HPC

cluster should configure it automatically for each job. Otherwise, please
configure it in the template to use the cluster node’s local temporary directory
along with a unique prefix, ie. TMPDIR=/tmp/$JOB_ID.$TASK_ID.$QUEUE.

• $TA_JOBID is the task id of the array job. This variable is mandatory for all array
jobs in TA. You should link this variable with the task id of the job, ie.
TA_JOBID=$SGE_TASK_ID

http://docs.python.org/library/re.html

input/
An input file defines the set of libraries to process with TA. There are no restrictions
on the name and location of an input file. This is the format of an input file:

LIBRARY ASSEMBLY_DIR PROJECT READLENGTH LIBRARYTYPE METALIBRARY

Each column is separated by space character(s).

Description of each column:
1. LIBRARY is the name of the library. This is the same prefix that you used in

your ABySS assemblies. If you are not sure, use the prefix of the FASTA file
-contigs.fa in the assemblies.

2. ASSEMBLY_DIR is the path to the directory containing the library’s multiple-
kmer assemblies and the "in" file, which is a text file listing the input reads one
path on each line.

3. PROJECT is the project name of the library. This is the name of the project that
you set up in configs/transcriptome.cfg or configs/genome.cfg

4. READLENGTH is the read length of the library. If your library consists of multiple
sequencing runs, use the smallest read length.

5. LIBRARYTYPE is the type of the library. It can one of:
• transcriptome
• genome
• targetted_genome
• plus_strand
• minus_strand

6. METALIBRARY is the name for strand-specific transcriptome library

Not all fields are required. METALIBRARY is only required for strand-specific
transcriptome libraries.

Each strand-specific transcriptome library consists of 2 lines, one line for the plus
strand assemblies and another line for the minus strand assemblies.

LIBRARY ASSEMBLY_DIR PROJECT READLENGTH plus_strand METALIBRARY
LIBRARY ASSEMBLY_DIR PROJECT READLENGTH minus_strand METALIBRARY

For example:

LIB001+ /assembly/dir/+/ MyProject 100 plus_strand LIB001
LIB001- /assembly/dir/-/ MyProject 100 minus_strand LIB001

annotations/

Analysis modules of TA require comparisons to a reference genome and gene
annotation files. TA organizes annotation files by genome under the annotations
folder, for example:

annotations/
|-- hg19/
| |-- genome.2bit
| |-- splice_motifs.fa
| `-- ...
`-- shared/
 `-- splice_motifs.txt

TA mainly uses the annotation files available from the UCSC genome browser:

ftp://hgdownload.cse.ucsc.edu/goldenPath/<genome>/database

A list of files required (<genome>_annot.txt) and a downloading script
(<genome>_annot.sh) available for the genomes hg18, hg19, and mm9 are provided in
the annotations folder for executing the wget downloads and running the following
processing steps. This is an example usage of setting up the hg19 annotation files:

cd <TA_DIR>/annotations
./hg19_annot.sh hg19/ hg19_annot.txt hg19 <TA_DIR>

where:
hg19/ is the destination folder
hg19 is the name of the genome

Note that a snp1xx.txt.gz is included in all genome's file lists. This dbSNP file is used
to annotate the snv/indel events detected. To speed up this annotation process, the
dbSNP annotation should be split by chromosome with this command:

split_dbsnp.sh ./split_dbsnp.sh \
<TA_DIR>/annotations/<genome>/snp1xx.txt <TA_DIR>

Note that dgv.txt.gz is also included. This is the DGV database flat file used to
annotate fusions and large scale rearrangement events detected.

The user is expected to have the single reference genome sequence FASTA file
available on the cluster for contig alignments. For example, the reference genome
hg19 can be downloaded from:

ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapi
ens/GRCh37/special_requests/

After that, put the path to the downloaded reference FASTA file in
configs/transcriptome.cfg under [genomes], ie.

[genomes]
hg19: /path/to/your/hg19/fasta_file/here

ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/
ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/

A 2bit version of the same genome sequence is expected to be present in the
genome folder for quick random access to the reference sequence. A <genome>.2bit
file can be generated from the utility faToTwoBit available from:
http://users.soe.ucsc.edu/~kent/src

To set up the reference genomes and annotations (both hg18 and hg19) to process
our sample datasets, run the following bash script:

bash setup_refs.sh

The script will download the reference genomes, run all of the aforementioned scripts
to set up the annotations, and configure the paths of the reference genomes in the
"genome" section of transcriptome.cfg and genome.cfg.

utilities/
analysis/

These two directories store the Python scripts used throughout the pipeline.

gsc/

This directory contains the Python interface for running Trans-ABYSS with SGE qmake.

http://users.soe.ucsc.edu/~kent/src

sample_dataset/

After you have installed all the required software, you may consider testing your
installation with our sample datasets.

Sample Transcriptome Dataset
• Read files:

reads/rnaseq_1.fq
reads/rnaseq_2.fq

1. Set up the environment:
source /your/path/to/setup.sh

2. Assemble with ABySS:
bash workdir/run_abyss_transcriptome.sh

3. Run the Trans-ABySS transcriptome pipeline:
bash workdir/run_transabyss_transcriptome.sh

The hg19 human reference genome and annotations are required.

Sample Transcriptome Dataset
• Read files:

reads/dnaseq_1.fq
reads/dnaseq_2.fq

1. Set up the environment:
source /your/path/to/setup.sh

2. Assemble with ABySS:
bash workdir/run_abyss_genome.sh

3. Run the Trans-ABySS genome pipeline:
bash workdir/run_transabyss_genome.sh

The hg18 human reference genome and annotations are required.

Running Trans-ABySS

All stages in TA are initiated with the Python driver script “trans-abyss.py”.
Please refer to the Trans-ABySS flow chart for a summary of the relationship between
the stages. Each stage is also described below.

Typically, each stage can be run like so:

python trans-abyss.py -<stage> \
--input <input file> \
--library <library>

If your input file consists of multiple libraries, you may select a range of libraries to be
run:

python trans-abyss.py -<stage> \
--input <input file> \
--library <library> \
--numlibraries <number of libraries>

By default, TA would submit jobs with qsub for each stage.

To run the entire pipeline with SGE qmake, use the --qmake option:

python trans-abyss.py \
--input <input file> \
--library <library> \
--qmake 100

The option `--qmake 100' limits 100 cluster jobs to run in parallel for each library.
When the stages are not specified (as shown above), the entire pipeline would be run
on its own. If you are interested in parts of the pipeline, then `-<stage>' is required to
specify the endpoint(s). For example, the options `-rc' would tell qmake to run the
stages 'reads-to-contigs' and 'contigs-to-genome' and their prerequisite stages if they
are not complete. Stages that have already been done with qmake will not be re-run
again.

To run the pipeline on your local machine, use the --local option:

python trans-abyss.py -<stage> \
--input <input file> \
--library <library> \
--local

If you do not want to set up an input file and a project in configs/transcriptome.cfg or
configs/genome.cfg, you can run TA like so:

python trans-abyss.py -<stage> \
--library <library> \
--assembly_dir <assembly directory> \
--project <project name> \
--readlength <read length> \

--run_transcriptome \
--topdir <project's top directory> \
--reference <name of reference genome>

Replace --run_transcriptome with --run_genome for your genome library.
The strand-specific transcriptome pipeline still requires an input file and a project in
the configuration file.

The --help option lists all available options in “trans-abyss.py”:

python trans-abyss.py --help

-d Set up directories
TA sets up the output directories and makes sym-links to your input ABySS
assemblies from the assembly directory specified with -a or within your input file.

All directories and output files would be placed under
<topdir>/trans-abyss-v1.4.8/<library>/

Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
`-- assembly/
 |-- in
 |-- k52 -> /assembly/dir/k52/
 |-- ...
 `-- k96 -> /assembly/dir/k96/

in is a text file listing all input read files; it is an exact copy of <library>.in in your
ABySS assembly directory.

-b Symlink reads-to-genome BAM (R2G)
Reads-to-genome alignments are required in stage -f for both transcriptome and
genome libraries, and in stage -i for genome libraries. They are supposed to be
done independently outside of TA.

Transcriptome libraries:
• Align reads to the genome plus exon-exon junctions reference with JAGuaR

http://www.bcgsc.ca/platform/bioinfo/software/jaguar
or with other gap-aligner such as GSNAP.

Genome libraries:
• Align reads to the reference genome with any short-read aligner such as BWA

that outputs in SAM format.

The resulting BAM file and its index (.bai) are expected to be found, either physically
or through symbolic links, in the reads-to-genome directory. The -b option for finding
and linking the BAM file is only meant for users within the Canada's Michael Smith
Genome Sciences Centre.

http://www.bcgsc.ca/platform/bioinfo/software/jaguar

-0 Filter, extend, merge assemblies (FEM)
This stage is frequently referred to as FEM and it was part of stage zero in TA 1.3.*.

Transcriptome libraries:
• junction contigs and indel bubbles are extended
• short contigs and short islands are removed
• overlapping/redundant sequences are merged
• sequences shorter than read length are removed

Genome libraries:
• indel bubbles are extended
• overlapping/redundant indel bubbles are merged
• redundant indel bubbles and contigs are merged
• no length-based filtering

Targetted Genome libraries:
• redundant contigs and indels are merged
• no extension
• no length-based filtering

Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
|-- filter/
| |-- cluster/
| | `-- ...
| |-- k52/
| | `-- ...
| |-- ...
| `-- k96/
| |-- <library>-contigs.fa
| `-- <library>.96.abyss-ta-filter.COMPLETE
`-- merge/
 |-- cluster/
 | `-- ...
 |-- <library>-contigs.fa
 |-- <library>.merge.abyss-rmdups-iterative.COMPLETE
 `-- stats.txt

filter/k*/<library>-contigs.fa is the filtered assembly with contigs and indels
extended.

merge/<library>-contigs.fa is the merged assembly.

merge/stats.txt contains the statistics for the ABySS assemblies and the merged
assembly.

Different intermediate files would be generated for different library types. However,
these 2 files are always the final output files in FEM:

merge/<library>-contigs.fa
merge/stats.txt

-R Prepare reads
This stage converts your input read files into the FASTQ format. If your read files to
the ABySS assemblies were already in the FASTQ format, you may skip this stage.

Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
`-- reads_to_contigs/
 |-- cluster/
 | `-- ...
 |-- reads/
 | |-- first_pair_1.fq
 | |-- first_pair_2.fq
 | |-- second_pair_1.fq
 | |-- second_pair_2.fq
 | `-- ...
 `-- <library>.in

reads_to_contigs/<library>.in is a text file listing all output read files in this stage.
This list of read files is the input to aligning reads to the merged assembly.

To increase the throughput of read alignments (the next step, -r) on a cluster, you
may consider partitioning your read files and align the partitions in parallel.
To use this feature, you need to turn on the `--partition INT' option in
`prepare_reads.py` by modifying its usage in your project.

Example for configs/transcriptome.cfg:
[sample_RNAseq_project]
prepare_reads.py-cmd: ${INPUT_READSLIST} ${OUTPUT_READSLIST} bwamem -p ${LIB}
-o ${OUTPUTDIR} -j ${JOBSCRIPTDIR} -P ${PROJECT} -r --transcriptome
--partition 3000000

Example for configs/genome.cfg:
[sample_DNAseq_project]
prepare_reads.py: ${INPUT_READSLIST} ${OUTPUT_READSLIST} bwamem -p ${LIB} -o
${OUTPUTDIR} -j ${JOBSCRIPTDIR} -P ${PROJECT} -r --genome --partition 3000000

-r Align reads to merged assembly (R2C)
TA is defaulted to use BWA-MEM to align reads to the merged assembly.

Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
`-- reads_to_contigs/
 |-- cluster/
 | `-- ...
 |-- <library>-contigs.fa -> ../merge/<library>-contigs.fa
 |-- <library>-contigs.bam
 `-- <library>-contigs.bam.bai

reads_to_contigs/<library>-contigs.bam is the BAM file.

When there is only one pair of reads file, this is a sym-link to a BAM file within the
same directory. Otherwise, this is the merged BAM file of two or more BAM files.

reads_to_contigs/<library>-contigs.bam.bai is the BAM index.

Different intermediate files would be generated for different library types. However,
these 2 files are always the final output files in R2C:

reads_to_contigs/<library>-contigs.bam
reads_to_contigs/<library>-contigs.bam.bai

-u Prepare contigs
This step partitions the merged assembly into multiple FASTA files prior to alignment
to the reference genome. It attempts to balance out the sizes of the partitions by
limiting each partition to a maximum of 3000000 bases.

Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
`-- contigs_to_genome/
 `-- <library>-contigs/
 |-- cluster/
 | `-- ...
 `-- input/
 |-- seq.1.fa
 `-- ...

contigs_to_genome/<library>-contigs/input/seq.*.fa are the split-up FASTA files.

-c Align merged assembly to reference genome (C2G)

Transcriptome libraries:
• TA aligns contigs with GMAP.

Genome libraries:
• TA aligns contigs with BWA-MEM.

Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
`-- contigs_to_genome/
 `-- <library>-contigs/
 |-- cluster/
 | `-- ...
 `-- output/
 |-- seq.1.sam
 `-- ...

contigs_to_genome/<library>-contigs/output/seq.*.sam are the alignment output
files. These files are in SAM format, but TA also accepts alignments in PSL format,
such as those from BLAT.

-f Call fusion events and other large scale rearrangement events
Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
`-- fusions/
 |-- cluster/
 | |-- 1/
 | | |-- LOG
 | | `-- fusions.tsv
 | `-- ...
 |-- fusions.tsv
 |-- sense_fusion.tsv
 |-- antisense_fusion.tsv
 |-- LSR.tsv
 |-- PTD.tsv
 |-- ITD.tsv
 |-- local.tsv
 |-- fusions_filtered.fa
 `-- LOG

See the next section for the description and format of output files.

-i Call indels
Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
`-- indels/
 |-- cluster/
 | |-- 1/
 | | |-- LOG
 | | `-- events.tsv
 | `-- ...
 |-- events.tsv
 |-- events_concat.tsv
 |-- events_exons.tsv
 |-- events_exons_novel.tsv
 |-- events_filtered.tsv
 |-- events_filtered_novel.tsv
 |-- filter_debug.tsv
 `-- LOG

See the next section for the description and format of output files.

-x Call novel splicing events and calculate coverage of known isoforms
This stage is only applicable to transcriptome libraries.

Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
`-- splicing/
 |-- cluster/
 | |-- 1/
 | | |-- LOG
 | | |-- coverage.tsv
 | | |-- events.tsv
 | | |-- log.txt
 | | `-- mapping.tsv
 | `-- ...
 |-- coverage.tsv
 |-- events.tsv
 |-- events_filtered.tsv
 |-- events_summary.tsv
 `-- mapping.tsv

See the next section for the description and format of output files.

-k Create UCSC custom track of the merged assembly
This stage is only applicable to transcriptome libraries.

Example output:

<topdir>/trans-abyss-v1.4.8/<library>/
`-- tracks/
 |-- cluster/
 | `-- ...
 `-- <library>.merged.best.unique.m90.gmap.psl.gz

tracks/<library>.merged.best.unique.m90.gmap.psl.gz is a custom track for the
UCSC genome browser.

Output format of analyses results files
Fusion (fusion.py)

Output Description of content

fusions.tsv unfiltered events captured by split contig alignments

sense_fusion.tsv gene fusion events where strand of gene1 is the same as strand of
gene2

antisense_fusion.tsv gene fusion events where strand of gene1 is opposite to strand of
gene2

PTD.tsv partial tandem duplication events where the 3' exon boundary of a
downstream exon is joined to the 5' exon boundary of an upstream
exon within the same gene

ITD.tsv internal tandem duplication events where a tandem duplication
occurs internal to an exon

LSR.tsv chimeras identified that cannot be classified as a gene fusion, PTD,
ITD, or local

local.tsv events are classified as 'local' when:
alignment target regions overlap, or
alignment target regions overlap same gene, or
transcripts mapped by target regions overlap,
and events are not PTD or ITD

LOG run log recording command run and parameters used

“sense_fusion.tsv”, “antisense_fusion.tsv”, “LSR.tsv”, “PTD.tsv”, “ITD.tsv”, and
“local.tsv” are events with read support passing all of the following criteria:

i. <flanking_pairs> >= 1, OR
min(<breakpoint_pairs>) >= 1

ii. 2 <= <flanking_pairs> + min(<breakpoint_pairs>) <= 2000
This can be adjusted with options --min_read_pairs and --max_read_pairs.

iii. <spanning_reads> >= 2
This can be adjusted with options --min_span_reads and --max_span_reads.

Content of “sense_fusion.tsv”, “antisense_fusion.tsv”, “LSR.tsv”, “PTD.tsv”, “ITD.tsv”,
and “local.tsv”:

Column Name Description

1 id event ID. Each line represents an event captured by an
individual contig. Identical events will be linked by the
first number of of 'id'. Example: 2.1, 2.2, 2.3 represent
the same event captured by 3 different contigs. Events
are grouped by type of rearrangement
(<rearrangement>) and breakpoint (<breakpoint>).
Reciprocal (<reciprocal>) events are indicated by 'a'
and 'b' attached at the end. Example: '89a' and '89b'
are reciprocal events.

2 contig contig ID

3 contig size size(or length) of contig (<contig>)

4 genomic_regions the 2 genomic regions the contig aligns to. Format:
chromosomeA:start1-end1,chromosomeB:start2-end2
(chromosome names are the same as in the FASTA file
used for contig alignments). Order of regions is sorted
by the chromosome names.

5 contig_regions the corresponding contig coordinates of the 2 genomic
regions. Format:
start1-end1,start2-end2 (regions in the same order of
genomic regions)

6 strands relative orientation of the 2 alignments in relation to the
genome. Format:[+|-],[+|-]

7 flanking_pairs number of read pairs from reads-to-genome alignments
with both mates flanking the breakpoint, both pointing
towards each other.

8 breakpoint_pairs number of read pairs from reads-to-genome alignments
with one mate spanning the breakpoint and the other
mate flanking it, both pointing towards each other. This
is useful for read-support when reads lengths are long
compared to fragment size. Pairs up- and down-stream
of the breakpoint are reported in a 2-member tuple.

9 spanning_reads number of reads spanning junction from reads-to-
contigs alignments

10 spanning_reads_forward number of spanning reads that are positive in
orientation in relation to the breakpoints

11 spanning_reads_reverse number of spanning reads that are negative in
orientation in relation to the breakpoints

12 rearrangement underlying genome rearrangement deduced by relative
contig alignment orientations. Can be “translocation”,
“deletion”, “inversion”, or “duplication”

13 breakpoint junction breakpoint. Format: chrA:coordinate1|
chrB:coordinate2. Chromosome names are in same
format as in FASTA file used for contig alignments

14 size size (bp) of the event

15 genes gene1,gene2 of the genes involved in the fusion.
'gene1' correspond to the first coordinate in
'breakpoint'; 'gene1' the second

16 transcripts transcript1,transcript2 of the transcripts picked for the
fusion event

17 senses '+' indicates the contig aligns in the same direction of
the gene strand, '-' indicates the contig aligns in
opposite direction of the gene strand

18 exons/introns exon/intron number ([exon|intron]N), '5utr', or '3utr'
where the breakpoints lie

19 exon_bounds whether breakpoint is within exon boundaries ('yes') or
not ('no')

20 reciprocal breakpoint coordinate (<breakpoint>) of reciprocal
event captured in same library

21 descriptor 'conventional' nomenclature of rearrangement e.g.
t(11;17)(q12.2;q25.1)

22 orientations indicates which parts of the chromosomes are joined
together. 'L' == chromosome upstream of breakpoint
coordinate; 'R' == chromosome downstream of
breakpoint coordinate

23 5' gene gene name of the 5' transcript in 'sense_fusion' cases
where the 5' and 3' transcripts can be unambiguously
discerned ('-' otherwise)

24 3' gene gene name of the 3' transcript in 'sense_fusion' cases
where the 5' and 3' transcripts can be unambiguously
discerned ('-' otherwise)

25 5' exon exon number of the 5' gene where the breakpoint lies.
If breakpoint lies in an intron, the downstream exon
number will be reported. If breakpoint lies in an UTR,
'5utr' or '3utr' will be indicated

26 3' exon exon number of the 3' gene where the breakpoint lies.
If breakpoint lies in an intron, the downstream exon
number will be reported. If breakpoint lies in an UTR,
'5utr' or '3utr' will be indicated

27 frame indicates whether there is a reading frame shift:
in: in frame
out: out of frame
NA: frame information cannot be deduced

28 probe contig sequence flanking the breakpoint (default: 50bp
on either side)

29 repeat1 repeats/segdups breakpoint 1 resides in

30 repeat2 repeats/segdups breakpoint 2 resides in

31 alignment_params alignment details, mainly for debug purpose.
Format: TO:,CO:,CC:,I1:,I2:,AF1:,AF2:, where
TO : target overlap fraction = overlap(target_region1,
target_region2)/ total_target_region_length
CO : contig overlap fraction = overlap(query_region1,
query_region2)/ total_query_region_length
CC : contig coverage = (match_length1 +
match_length2 – overlap) /query length
I1 : percent identity of alignment 1
I2 : percent identity of alignment 2

AF1 = alignment fraction of alignment 1:
match_length1/query_length
AF2 = alignment fraction of alignment 2

32 type can be:
“sense_fusion” - if the breakpoints reside in 2
transcripts, and the orientations of the contig relative to
the 2 transcripts are the same
“antisense_fusion” - if the breakpoints reside in 2
transcripts, and the orientations of the contig relative to
the 2 transcripts are NOT the same
“LSR” - any fusion event not of the above types

33 dbsnp dbSNP entries for deletion events that are already
annotated in dbSNP

34 dgv DGV entries for deletion and inversion events that are
already annotated in DGV

SNV/INDEL (snv_caller.py)

Output Description

events.tsv unfiltered snv/indel events captured by gapped contig
alignments

events_filtered.tsv filtered events, <event_reads> >=
min_read_contigs(default:3)

events_filtered_novel.tsv filtered events not annotated in dbSNP

events_exons.tsv filtered, non-synonymous events residing in gene exons

events_exons_novel.tsv filtered, non-synonymous events residing in gene exons not
annotated in dbSNP

LOG run log recording command run and parameters used

Content of “events_filtered.tsv”:

Column Name Description

1 id event ID. Each line represents an event captured by an
individual contig. Identical events will be linked by the
first number of of 'id'. Example: 2.1, 2.2, 2.3 represent
the same event captured by 3 different contigs. Events
are grouped by event type (<type>), coordinate
(<chr> + <chr_start> + <chr_end>), and the
alternative allele (<alt>)

2 type event type. Can be 'snv', 'ins', 'del', 'inv'

3 chr chromosome name (as in the chromosome name in the
FASTA file used for contig alignments)

4 chr_start chromosome start coordinate. If <type> == 'ins',
<chr_start> = coordinate immediately upstream of
insertion. If <type> == 'del' or 'inv', <chr_start> =
first base of deletion or inversion. If <type> == 'snv',
<chr_start> == <chr_end>, the base of substitution

5 chr_end chromosome end coordinate. If <type> == 'ins' or
'snv', <chr_end> = <chr_start>. If <type> == 'del' or
'inv', <chr_end> = last base of deletion or inversion

6 ctg contig ID

7 ctg_len length of contig (<ctg>) that captures event

8 ctg_start contig start coordinate. If <type> == 'ins',
<ctg_start> = coordinate immediately upstream of
insertion. If <type> == 'del' or 'inv', <ctg_start> =
first base of deletion or deletion. If <type> == 'snv',
<ctg_start> == <ctg_end>, the base of substitution

9 ctg_end contig end coordinate. If <type> == 'ins' or 'snv',
<ctg_end> = <ctg_start>. If <type> == “del” or 'inv',
<ctg_end> = last base of deletion or inversion

10 len length (or size) of event

11 ref reference allele. If <type> == 'ins', <ref> = 'na'

12 alt alternative allele. If <type> == 'del', <ref> = 'na'

13 event_reads total number of reads spanning event from reads-to-
contig alignment

14 contig_reads number of reads spanning event in contig (<ctg>) from
reads-to-contig alignment

15 genome_reads total number of reads spanning event from reads-to-
genome alignment

16 gene gene in affected locus.
Format: gene:transcript:[intron|exon]number|effect on
open reading frame (see below)
If the event size is bigger than 1, the output is a pairing
of the above format on both coordinates, i.e.:
geneA:transcriptA:[intron|exon]numberA|
geneB:transcriptB:[intron|exon]numberB|effect on open
reading frame, where A and B may be the same (small
event within the same transcript) or different (bigger
events)

17 repeat-length length of repeat in alternative allele, e.g. AAAA = 4,
CAGCAG = 2

18 ctg_strand query strand of alignment in relation to reference

19 from_end shortest distance (bases) of event to end of contig.

20 confirm_contig_region contig coordinate range (start, end) used for checking
event support in reads-to-contig alignments

21 within_simple_repeats overlap with simple repeats. Name of tandem repeat
reported if overlap is True e.g.
TRF_SimpleTandemRepeat_CATC. '-' if overlap is False.

22 repeatmasker overlap with RepeatMasker annotations. Type of
repeat reported if overlap is True e.g. AluSx, LTR47A .
'-' if overlap is False.

23 within_segdup overlap with segmental duplication (segdup).
Chromosome:Start_coordinate of segdup partner
reported if overlap is True, e.g. chr1:17048246. '-' if
overlap is False.

24 at_least_1_read_opposite if at least 1 supporting read is aligned in opposite
orientation to rest of supporting reads. Can be “true”
or “false”

25 dbsnp dbSNP entries if event is already annotated in dbSNP
e.g. rs12028735,rs71510514

Novel Splicing (model_matcher.py)

Output Description

events.tsv unfiltered novel splicing events not observed in annotations
specified in model_matcher.cfg

events_filtered.tsv filtered events. See below for filtering criteria.

events_summary.tsv tally of filtered events by <type>

coverage.tsv transcript coverage

mapping.tsv mapping of contig to annotated transcripts

log.txt detailed block-by-block mapping of alignments to exons

LOG run log recording command run and parameters used

Contents of “events_filtered.tsv”:

Column Name Description

1 id event ID. Each line represents an event captured by an
individual contig. Identical events will be linked by the first
number of <id>. Example: 2.1, 2.2, 2.3 represent the same
event captured by 3 different contigs. Events are grouped by
event type (<type>) and genome coordinate <genome_coord>.

2 type event type. Can be:
AS3: novel 3' splice site
AS5: novel 5' splice site
AS53: novel 5' and 3' splice site (on the same alignment block)
novel_exon: novel exon
novel_intron: novel intron
novel_transcript: novel transcript, when contig cannot be

mapped to any known transcript
novel_utr: novel UTR, when novel alignment blocks exist beyond
annotated 5' and 3' exons of mapped transcript
retained_intron: retained intron
skipped_exon: skipped exon

3 contig contig ID

4 transcript transcript name

5 gene gene name

6 exons exon number(s), relative to transcript strand, start from 1

7 align_blocks alignment block numbers, counted in ascending order of
coordinate, start from 1.

8 geome_coord genome coordinate of novel block. Format: chromosome:start-
end

9 contig_coord contig coordinate of novel block

10 splice splice sites adjacent to the novel junction. E.g. gtAG(U2/U12),
where 'AG' (in capitals) is the novel splice donor/acceptor
created by the novel sequence, 'gt' is the partner splice
donor/acceptor; 'U2/U12' is name of the splice motif. If a novel
block creates two novel splice sites (e.g. a 'skipped_exon' event),
2 splice sites will be reported e.g. gtAG(U2/U12),GTag(U2/U12)

11 multi_3 only applicable to 'retained_intron' events. “True” if the size of
the intron retained is a multiple of 3, i.e. retained open reading
frame

12 size size of novel block. Only applicable to AS53, novel_exon,
novel_intron, novel_transcript, and novel_utr

13 orf effect on open reading frame. See below.

14 spanning_reads number of reads spanning novel junction, gathered from reads-
to-contig alignments

15 coverage number of reads spanning novel block. Applies to 'AS53',
'novel_exon', 'novel_transcript', 'novel_utr', and 'retained_intron'

Contents of “coverage.tsv”:

Column Name Description

1 feature 'gene' or 'transcript'

2 model single-letter initial of gene model used for coverage
calculation. The initial is specified in the
configuration file 'model_matcher.cfg'

3 transcript transcript name

4 gene gene name

5 exon exon number (currently not relevant as exon-level

coverage is not reported)

6 strand transcript strand

7 coord coordinate of <feature> chromosome:start-end

8 feature_size Best contig mapped to <transcript> in terms of
bases covered

9 bases_reconstructed number of exonic bases reconstructed by all contig
mapped to <feature>

10 reconstruction fraction of exonic bases reconstructed by all contig
mapped to <feature>

11 num_reads number of reads spanning feature from reads-to-
contigs alignments (currently not reported)

12 bases_reads total number bases spanning feature from reads-to-
contigs alignments (currently not reported)

13 depth <bases_reads> / <num_reads>

14 contigs list of contigs mapped to <feature>

15 num_contigs number of contigs mapped to <feature>

16 best_contig ID of contig that reconstructs <feature> best

17 best_contig_reconstruction fraction of <feature> reconstructed by
<best_contig>

18 align_blocks list of alignment blocks used for reconstructing
<feature> - only reported in intermediate batch
outputs before filtering stage

19 exons list of exons reconstructed - only reported in
intermediate batch outputs before filtering stage

Contents of “mapping.tsv”:

Column Name Description

1 contig contig ID

2 contig_len length or size of <contig>

3 coord genome alignment coordinate of <contig>

4 model single-letter initial of gene model used for coverage
calculation. The initial is specified in the configuration file
'model_matcher.cfg'

5 transcript name of mapped transcript

6 gene gene name of <transcript>

7 strand strand of <transcript>

8 coding 'CODING' or 'NONCODING'. 'NONCODING' if start and end
coordinate of <transcript> are the same in annotation file

9 intronic intron number if <contig> is mapped to introns; '-' if
otherwise

10 num_align_blocks number of alignment blocks

11 num_exons number of exons of <transcript>

12 num_matched_blocks number of alignment blocks matched to exons. Internal
blocks are considered 'matched' when both edges align,
terminal blocks are considered 'matched' when internal
edges align

13 matched_blocks list of matched alignment blocks. Blocks are numbered
from left to right

14 matched_exons list of matched exons. Exons are numbered in reference
to transcript strand (<strand>)

15 score number of edges matched (terminal edges count if
corresponding internal edges match)

16 coverage fraction of exonic bases of <trancript>
covered/reconstructed by <contig>

17 align_blocks genome coordinates (start, end) of all alignment blocks
with each block separated by ';'

Miscellaneous

Open Reading Frame Effect Descriptors

Throughout the output from TA, a standard nomenclature (used, for example, by the
Human Genome Variation Society) is used to denote the effect of an event on a gene
at the protein level. The following table describes the changes with an example
notation and explanation:

Change Example

frameshift A245Sfs (Alanine 245 becomes Serine followed by a frameshift)

deletion V422_S431del (deletion from Valine 422 to Serine 431)

insertion Q484_I485insVA (insertion of Valine and Alanine in between Glutamine 484
and Isoleucine 485)

indel S293_Y294insKS (Serine 293 to Tyrosine 294 becomes Lysine and Serine)

synon Synonymous/silent

substitution T327S (Threonine 327 to Serine)

