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Computational Analysis of ChIP-seq Data

Hongkai Ji

Abstract

Chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) is a new technol-
ogy to map protein–DNA interactions in a genome. The genome-wide transcription factor binding site
and chromatin modification data produced by ChIP-seq provide invaluable information for studying gene
regulation. This chapter reviews basic characteristics of ChIP-seq data and introduces a computational
procedure to identify protein–DNA interactions from ChIP-seq experiments.
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1. Introduction

Chromatin immunoprecipitation (ChIP) followed by massively
parallel sequencing (ChIP-seq) is a new technology to map
protein–DNA interactions in genomes (1–4). In this technology,
a protein of interest (POI) is cross-linked to chromatin. Chro-
matin is sheared into small fragments. The POI and its bound
chromatin fragments are immunoprecipitated using an antibody
specific to the protein. After reversing the cross-links, a DNA sam-
ple called “ChIP sample” is obtained. In many studies, a negative
control sample is prepared in parallel using a similar protocol that
bypasses the immunoprecipitation step. Compared to the control
sample, the ChIP sample is enriched in DNA fragments bound
by the protein of interest. After size selection and further process-
ing, DNA fragments in the samples are sequenced from both ends
using one of the recently developed high-throughput sequencing

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
DOI 10.1007/978-1-60761-854-6_9, © Springer Science+Business Media, LLC 2010

143



144 Ji

Fig. 9.1. Workflow for ChIP-seq.

platforms (5). This produces tens of millions of sequence tags,
also known as sequence reads. By computationally mapping these
reads to a reference genome and looking for genomic regions
where ChIP reads are enriched, genomic loci with protein–DNA
interactions can be identified (Fig. 9.1). Currently, this tech-
nology is widely used to study transcription factor binding sites
(TFBS) (1, 2) and chromatin modifications (3, 4). The genome-
wide transcription factor binding site and chromatin state data
produced by ChIP-seq provide invaluable information for study-
ing gene regulation.

An earlier technology to map protein–DNA interactions in
genomes is ChIP-chip (6, 7), which uses chromatin immuno-
precipitation to enrich protein-bound DNAs and hybridizes the
enriched DNA fragments to genome tiling arrays. Compared to
ChIP-chip, ChIP-seq has several advantages (8). First, ChIP-seq
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does not rely on array hybridization. As a result, it does not suf-
fer from the biases and noise caused by cross-hybridization, the
varying GC content of probe sequences and other issues related
to hybridization chemistry, although ChIP-seq may have its own
biases that are not well understood currently. Second, ChIP-
chip measures enrichment by intensities of hybridization which
may saturate at high signal, whereas ChIP-seq measures enrich-
ment by tag counts which can handle signals in a much broader
dynamic range. Third, protein–DNA interactions detected by
ChIP-chip are restricted to genomic regions for which probes are
available. Repetitive regions in the genome usually are excluded
from the array design. In contrast, ChIP-seq can be used to
study protein–DNA interactions in any part of the genome as
long as reads can be unambiguously aligned to places where
they are originally produced. For this reason, ChIP-seq is able
to offer much less biased genome coverage. Fourth, for map-
ping TFBS, ChIP-seq is able to locate binding sites at 50–100
base pair (bp) resolution. This represents a significantly improved
precision compared to the 300–1,000 bp resolution provided by
ChIP-chip. Other advantages of ChIP-seq include requirement
of less input materials and ability to provide extra information to
study allele-specific protein binding. Thanks to these advantages,
as the cost of high-throughput sequencing continues to decrease,
ChIP-seq has the potential to become the dominant technology
for creating genome-wide maps of protein–DNA interactions.

ChIP-seq creates unprecedented amounts of data. Extracting
information from the data is not trivial. Typically, the analysis is
a multiple step procedure (Fig. 9.1). First, raw sequence reads
are mapped to the reference genome. Next, genomic regions
in which ChIP reads are enriched are identified and the statis-
tical significance of the predicted genomic regions is evaluated.
Regions that satisfy certain significance criteria are reported. Sub-
sequently, the reported regions are analyzed in various ways to
help scientists understand their functional implications. These
include adding gene annotations, finding or mapping transcrip-
tion factor binding motifs, and correlating the protein–DNA
interactions with gene expression information. The purpose of
this chapter is to briefly review some basic characteristics of ChIP-
seq data and introduce a computational procedure to analyze the
data. We will mainly focus on describing a method to identify
protein–DNA interactions and estimate the false discovery rates
(FDR). Tools to perform subsequent analyses will be discussed
briefly.

1.1. Types
of ChIP-seq
Experiments

We focus on two types of ChIP-seq experiments, namely the
“one-sample experiment” and the “two-sample experiment.” A
two-sample experiment involves sequencing both a ChIP sam-
ple and a negative control sample. In contrast, a one-sample
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experiment only involves sequencing a ChIP sample. Readers are
referred to Note 1 for a discussion on how to analyze experiments
that have technical or biological replicates.

Compared to the two-sample experiment, the one-sample
design is more cost effective. However, the negative control sam-
ple in the two-sample experiment allows one to build a better
model to describe locus-dependent background noise, which can
significantly reduce the number of false positives and false nega-
tives in the subsequent data analyses (9, 10).

1.2. Models for
Background Noise

In both one-sample and two-sample experiments, protein–DNA
interactions can be identified by searching for enrichment of ChIP
reads. A key component of ChIP-seq data analysis is to under-
stand what level of enrichment is required to distinguish signals
from noise.

1.2.1. Background
Model for One-Sample
Experiments

First consider a one-sample experiment. Assume that the length
of the genome is L bps and the sample has N uniquely mapped
reads in total. Consider a w bp window in the genome, and let n
be the number of reads mapped to the window. Studies of neg-
ative control samples show that if the window does not contain
any protein–DNA interaction of interest, n can be approximately
modeled by a negative binomial distribution NB(α, β) (9). In

other words, Pr(n = k) =
(

k + α − 1
α − 1

) (
β

β + 1

)α (
β

β + 1

)k
.

Here all background windows in the genome have the same values
of α and β. Based on this result, one approach to characterize the
background noise is to find appropriate parameter values of α and
β using the observed data. When estimating α and β, one should
keep in mind that the data (i.e., the ChIP sample) usually consist
of a mixture of background windows and windows that contain
signals; however, α and β are parameters to describe background
noise only. An algorithm that estimates the background parame-
ters α and β from a mixture of signal and noise windows will be
described in Section 3.2.1.

Another natural way to model the read count of a back-
ground window is to assume that n follows a Poisson distribu-
tion with a rate parameter λ (i.e., Pr(n = k) = λke−λ/k!). Recent
studies show that the Poisson distribution with a fixed rate λ
does not perform well to characterize the background variabil-
ity in real data (9–11). For example, in Table 9.1, a negative
control sample from a ChIP-seq experiment in mouse embry-
onic stem cells (12) is analyzed by both the Poisson background
model and the negative binomial model. The genome is divided
into 100 bp long non-overlapping windows and the number of
uniquely mapped reads in each window is counted. The negative
control sample contains no protein–DNA interactions of interest;
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Table 9.1
Comparison of the Poisson and negative binomial background model

Read count Observed frequency Expected by Poisson Expected by NB

0 0.792664 0.792664 0.792230

1 0.164843 0.164843 0.164753
2 0.034140 0.017140 0.034122

3 0.006587 0.001188 0.007057
4 0.001320 0.000062 0.001459

5 0.000288 0.000003 0.000301
6 0.000075 0.000000 0.000062

7 0.000023 0.000000 0.000013
. . . . . . . . . . . .

hence all windows represent background noise. The second col-
umn of the table shows the observed frequency that a window
contains k reads. The third and fourth columns show frequencies
expected by the Poisson and negative binomial models, respec-
tively. This table clearly shows that the Poisson model is not able
to describe the heavy tail of the empirical read count distribution
and the negative binomial model performs much better.

Using a fixed rate Poisson model assumes that background
reads are generated at the same rate for all loci in the genome
or, in other words, background reads are distributed uniformly
across the genome. Table 9.1 illustrates that this assumption
does not fit well with the real data. In the negative binomial
model, it is implicitly assumed that the background reads are
generated by Poisson distributions with different rates at dif-
ferent loci, and as a result, the background reads are not uni-
formly distributed across the genome. In order to see this, we
note that a negative binomial distribution can be related to a
Poisson distribution via a hierarchical model. Let us divide the
genome into w bp long non-overlapping windows and assume
that different windows generate reads independently. Let λi be
the rate to generate reads in the ith window, ni be the number
of reads in window i, and assume that ni |λi ∼ Poisson (λi). If
we allow λi to vary across the genome but assume that λi’s are
random samples drawn independently from a locus-independent
gamma distribution Gamma(α, β) (the probability density func-
tion for Gamma(α, β) is f (x) = βα

$(α)xα−1e−βx), then the marginal
distribution of ni of a background window, Pr(ni = k|α, β) =∫

Pr(ni = k|λi)f (λi|α, β)dλi, has the same probability density
function as that of the NB(α, β).

The hypothesis that read sampling rates vary across the
genome is supported by analyses of independent samples from
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Fig. 9.2. Correlation of read numbers at the same genomic loci between a ChIP sample
and a control sample. The samples are obtained from a ChIP-seq experiment that maps
the NRSF TFBSs (1). The human genome is divided into non-overlapping windows, each
window containing 1 million base pairs. For each window, ChIP and control reads are
counted and plotted as a dot.

the same experiment (10). As an example, Fig. 9.2 shows a scat-
ter plot that compares the window read counts between a ChIP
sample and a matching negative control sample in an experi-
ment involving transcriptional repressor NRSF (1). The plot has
a positive slope and the counts from the two samples in the
same genomic window are clearly correlated. This indicates that
the rate for generating reads is locus dependent and is not a
constant across the genome. Unfortunately, in a one-sample
experiment, background reads in a particular window cannot be
separated from reads that represent biological signals in the same
window. For this reason, the locus-dependent Poisson rate cannot
be estimated without making additional assumptions. The nega-
tive binomial model makes the assumption that the background
rates λis follow a common gamma distribution. By making this
assumption, information from all windows can be used to infer
the common parameters α and β, which are then used to describe
the background for each individual window. This is the under-
lying rationale for using a negative binomial distribution as the
background model (see Note 2 for an alternative solution).

1.2.2. Background
Model for Two-Sample
Experiments

Now consider a two-sample experiment that involves a control
sample in addition to a ChIP sample. Assume that the ChIP sam-
ple has N uniquely mapped reads in total and the control sample
has M uniquely mapped reads. For a w bp window indexed by
i, let ni be the number of ChIP reads mapped to the window,
and mi be the number of control reads. In the previous section, it
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has been shown that the read counts in background windows can
be viewed as Poisson random variables with varying rates across
the genome (which results in negative binomial marginal distri-
butions). In light of this observation, one can assume that ni ∼
Poisson(µi) and mi ∼ Poisson(λi), where µi and λi are rates at
which reads are produced in window i in the ChIP and control
samples, respectively, and we allow µi and λi to have different
values at different loci in the genome. For each genomic window,
µi can be decomposed into two parts µi = µi1 + µi0, where µi0
is the rate at which background reads are generated and µi1 is
the rate to generate reads corresponding to signals. Often, it is
reasonable to assume that the background rates in the ChIP and
control samples, µi0 and λi, are equal up to a proportionality con-
stant, i.e., µi0 = cλi. The proportionality constant c reflects the
observation that the total numbers of reads in the ChIP and con-
trol samples are usually not the same. Under the assumption that
µi0 = cλi, information from the negative control sample can be
used to describe the background read sampling rate in the ChIP
sample. As a result, the assumption used in the one-sample anal-
ysis that background read sampling rates from different genomic
windows follow a common probability distribution is no longer
required.

For a window that does not contain any protein–DNA inter-
actions, µi = µi0 = cλi. It is known that the sum of two inde-
pendent Poisson random variables X ∼ Poisson(λ1) and Y ∼
Poisson(λ2) follows a Poisson distribution, Poisson(λ1 + λ2), and
conditional on the sum, X, follows a binomial distribution. In
other words, X

∣∣X + Y = n ∼ Bin(n, p) , where p = λ1/(λ1+λ2)

(i.e., Pr(X = k | X + Y = n) =
(

n
k

)

pk(1 − p)n−k).

Using these results, the number of ChIP reads in a back-
ground window conditional on the total number of reads
in that window should follow a binomial distribution, i.e.,
ni

∣∣mi + ni ∼ Bin(mi + ni, p0) , where p0 = c/(1 + c) represents
the expected proportion of ChIP reads in a background window.
If p0 is known, the enrichment of ChIP reads in any window can
be evaluated. This evaluation does not require the knowledge of
the actual values of the background sampling rates, λi.

In order to estimate p0, one should keep in mind that
the ratio N/(M + N ) based on the total read numbers in the
two samples is a biased estimate. This is because the ChIP
sample contains both background reads and reads that repre-
sent signals, whereas p0 is related only to the background. If
we divide the genome into w bp long non-overlapping win-
dows (indexed by i) and assume that read numbers in dif-
ferent windows follow independent Poisson distributions, then
N∼ Poisson(

∑
i µi0 + ∑

i µi1) and M∼ Poisson(
∑

i λi). As a
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result, N
∣∣M + N ∼ Bin(M + N , q) , where q = (c + d)/(1 +

c + d) #= c/(1 + c) and d = ∑
i µi1

/∑
i λi. It can be shown that

given λi, µi1, and c, the expectation of N / (M + N) is q which is
not equal to p0. An algorithm that estimates p0 and uses the bino-
mial distribution to evaluate the enrichment of ChIP reads will be
described in Section 3.2.2. An alternative approach to evaluate
background variability for two-sample experiments is discussed in
Note 3.

1.3. Normalization The proportionality constant c = p0/(1 − p0) in the two-sample
analysis can be viewed as a way to normalize the read counts of
two different samples. This normalizing constant can be used to
compute the fold enrichment of ChIP reads, which is defined
by (9) as the ratio (ni + 1)/(cmi + 1). Here mi and ni are read

Fig. 9.3. Peak shape for a TFBS. a Reads are generated from both ends of DNA frag-
ments. b 5′ reads are aligned to the forward strand of the reference genome, and 3′
reads are aligned to the reverse complement strand. These two types of reads form two
separate peaks. The binding site is located between the modes of the peaks. From top
to bottom, the four signal tracks are the number of 5′ reads aligned to each genomic
position, number of 3′ reads aligned to each position, 5′ read count in a 100 bp sliding
window, and 3′ read count in a 100 bp sliding window. The read counts in sliding win-
dows form smooth curves. The modes of the curves define boundaries of binding sites.
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numbers in the control and ChIP samples in a window indexed
by i and a regularization constant one is added to both the numer-
ator and the denominator to avoid dividing by zero.

1.4. Peak Shape In most current high-throughput sequencing platforms, sequence
reads are produced from both ends of DNA fragments. Surround-
ing a TFBS on the chromosomal map, reads that are aligned to
the forward strand of the genome will form a peak upstream of
the binding site, and reads that are aligned to the reverse com-
plement strand will form a peak downstream of the binding site
(13, 14) (Fig. 9.3). This forms a characteristic peak shape that
contains useful information for distinguishing bona fide binding
sites from false positives. Predicted TFBSs without this bimodal
peak shape are often false positives and should be eliminated from
the final results. The bimodal shape is also useful for making high-
resolution binding site predictions. The bona fide binding site
should fit in between the modes of the two peaks. Using this
information, a TFBS can usually be mapped to a 50∼100 bp long
region (9, 11, 14–16).

2. Software

The methods described in this chapter for building back-
ground models and detecting protein–DNA interactions from
mapped sequence reads are implemented in the open-source
software CisGenome which is available at http://www.biostat.
jhsph.edu/∼hji/cisgenome (9). CisGenome provides a user-
friendly graphic interface and it can also be used to per-
form various types of subsequent analyses. Sequence reads
can be mapped to a reference genome using one of
the following software tools: Eland provided by Illumina,
Inc., Bowtie at http://bowtie.cbcb.umd.edu (17), MAQ
at http://maq.sourceforge.net/ (18), SeqMap at http://
biogibbs.stanford.edu/∼jiangh/SeqMap/ (19), Corona Lite
provided by the Life Technologies (http://solidsoftwaretools.
com/gf/project/corona/), and SHRiMP at http://compbio.cs.
toronto.edu/shrimp/ (20).

3. Methods

In this section, we describe a procedure to detect protein–DNA
interactions from ChIP-seq data. Alternative methods are dis-
cussed in Note 4.
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3.1. Align Sequence
Reads

The first step of data analysis is to align sequence reads to a ref-
erence genome. A number of software tools have been developed
to support fast mapping of millions of short-sequence tags to
complex genomes. Examples include Eland (Cox, unpublished),
Bowtie (17), MAQ (18), SeqMap (19), and SHRiMP (20). For
data generated by the Life Technologies’ SOLiD platform, align-
ment needs to be performed in color-space using tools such as
Corona Lite (unpublished) and SHRiMP (20). From now on, we
assume that all sequence reads are mapped, and reads that are
uniquely aligned to the genome are retained for subsequent anal-
yses.

3.2. Building
Background Models

Using the mapped reads, build a background model using
CisGenome (9).

3.2.1. Background
Model for Analyzing
One-Sample
Experiments

Divide the genome into non-overlapping windows. The window
size w should be chosen to roughly match the expected length
of enrichment signals. For TFBS analysis, the window size w is
typically set to 100 bp (see Note 5 for more discussions). The
entire set of windows can be viewed as a mixture of windows that
represent background noise and windows that contain protein–
DNA interactions of interest. Let π0 denote the proportion of
background windows. π0 is unknown and needs to be estimated
from the data.

For each window, count the number of reads that are
uniquely aligned to the window. Let ni be the number of
reads within the ith window. It is assumed that for background
and non-background windows, ni follows two different prob-
ability distributions for which density functions are f0(n) and
f1(n), respectively. Under this assumption, the data generating
distribution for ni can be described by a mixture distribution
g(n) = π0f0(n) + (1 − π0)f1(n). Use the empirical distribution of
ni, i.e., the observed frequencies that ni = n(n = 0, 1, 2, . . .), to
estimate g(n).

Based on the discussions in Section 1.2.1, the background
distribution f0(n) can be modeled by a negative binomial distribu-
tion NB(α, β). In order to estimate α and β, we assume that win-
dows with small number of reads are mostly background. Under
this assumption, the background parameters α and β can be esti-
mated using windows with no more than two reads. For a random
variable n that follows negative binomial distribution NB(α, β),
define r1 = Pr(n = 1)/ Pr(n = 0) and r2 = Pr(n = 2)/ Pr(n = 1).
Since r1 = α/(β + 1) and r2 = (α + 1)/[2(β + 1)], we have α =
r1/(2r2 − r1) and β = 1/(2r2 − r2) − 1. Therefore, to estimate
α and β count the number of windows that contain k reads and
denote it as uk. Use u1/u0 to estimate r1 and use u2/u1 to esti-
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mate r2. Plug the estimated values of r1 and r2 into r1/(2r2 − r1)
and 1/(2r2 − r1) − 1 to obtain the estimates of α and β.

In order to estimate π0, we assume that most windows
with no mapped read represent background noise. Under this
assumption, g(0) ≈ π0f0(0) and π0 ≈ g(0)/f0(0). Therefore, π0

can be estimated by u0

/
[(

∑
k uk) ˆf 0(0)]. Finally, using the esti-

mated π0, f0(.) and g(.), one can estimate the local false dis-
covery rate (local FDR) for any w bp window as follows:
lfdr (window i) = π0f0(ni)/g(ni). Here, ni is the observed read
count for window i.

3.2.2. Background
Model for Analyzing
Two-Sample
Experiments

Divide the genome into w bp long non-overlapping windows. For
each window, count the number of reads that are uniquely aligned
to the window. For window i, let ni and mi denote the number
of reads in the ChIP and control samples, respectively, and let
ti = ni + mi be the total read count.

Using windows for which ti is small (we usually use win-
dows that contain only one mapped read, i.e., indices i for which
ti = 1), estimate the expected proportion of ChIP reads in
background windows as p̂0 = ∑

i ni
/∑

i (ni + mi). This implic-
itly assumes that windows with small read counts mainly represent
background. Estimate the normalizing constant ĉ= p̂0

/
(1 − p̂0).

Next, group windows based on their total read counts ti. For
each group of windows for which ti = t(t = 0, 1, 2, . . .), com-
pute the observed frequency that ni = n(n = 0, 1, . . . , t). Derive
the function gobs(n |t ) = {number of windows for which ti = t
and ni = n} / {number of windows for which ti = t}. Define
fBin(n

∣∣t , p0 ) = Pr(X = n) where X ∼ Bin(t , p0). For a window
that contains t reads among which n are ChIP reads, estimate the
local FDR as fBin(n

∣∣t , p̂0 )/gobs(n |t ). When t becomes big, there
will be fewer windows available for estimating gobs(n |t ). In order
to get robust local FDR estimates, if there are fewer than 100
independent windows for a particular t, we suggest extrapolat-
ing the local FDR estimates from windows with smaller total read
counts. In other words, find the biggest t’ < t that has more than
100 windows. For a window that contains t reads and n ChIP
reads, the local FDR is estimated as fBin(n′ ∣∣t ′, p̂0 )/gobs(n′ ∣∣t ′ ),
where n′ =

⌊
t ′n

/
t
⌋

and &x' represents the maximal integer that
is not bigger than x.

3.3. Detect
Protein–DNA
Interactions

Using CisGenome (9), scan the reference genome using a w bp
long-sliding window. Compute the local FDR for each window.
For analyzing a one-sample experiment, use the estimated back-
ground model described in Section 3.2.1. For analyzing a two-
sample experiment, use the procedure described in Section 3.2.2.
For the two-sample analysis, also compute a fold enrichment for
each window: (ni + 1)/(ĉmi + 1). Here ni is the number of ChIP
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reads in the window, mi is the number of control reads, andĉ is
the normalizing constant estimated using the method in Section
3.2.2.

Select all windows with local FDR smaller than a given cutoff
(usually ≤ 10%). Merge overlapping windows into a single region.
Report all regions obtained after merging. During the process in
which windows are merged, use the smallest local FDR among the
overlapping windows as the local FDR for the merged region. For
the two-sample analysis, use the biggest fold enrichment among
all the overlapping windows as the fold change of the merged
region.

3.4. Improve
Predictions
of Transcription
Factor Binding Sites

If the purpose of the ChIP-seq experiment is to locate TFBSs, the
reported regions should be further processed using CisGenome
as follows to improve the results.

3.4.1. Determine the
Binding Site Boundary

Use a w bp sliding window to scan each reported region. For
each window, count reads in the ChIP sample that are aligned to
the forward strand of the genome and those that are aligned to
the reverse complement strand. This creates two smooth curves
of read counts (Fig. 9.3). Identify the locations where the two
curves achieve their maxima (i.e., the modes of the curves) and
use these locations to define boundaries of binding sites.

3.4.2. Adjust for DNA
Fragment Length

For each reported region, compute the distance between the
modes of the peaks on the forward and reverse complement
strands. Compute the median of all distances and denote it as
L. Shift all reads toward the center of the DNA fragments by L/2
base pairs. Reads aligned to the forward strand of the genome
are shifted toward 3′ of the reference genome and reads aligned
to the reverse complement strand are shifted toward 5′ of the
reference genome. Using the shifted reads, perform the analyses
described in Sections 3.2 and 3.3 again. For the reported regions,
determine the binding site boundaries using unshifted reads as
described in Section 3.4.1.

3.5. Subsequent
Analyses

Having identified protein-binding regions, they can be analyzed
in different ways to study the biological implications. Here we
suggest a few common analyses, most of which can be carried out
using CisGenome (9). First, compute frequencies that reported
regions occur in intragenic and intergenic regions, exons, introns,
promoter regions, and other structural features of genes and
compute the average level of conservation across species for
each region. These two analyses may provide information on
functional contexts and importance of the reported regions.
Second, extract genes in the neighborhood of the reported
regions as a gene set and perform Gene Set Enrichment analysis
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(http://www.broadinstitute.org/gsea/) (21) and Gene Ontol-
ogy analysis (http://www.geneontology.org/GO.tools.shtml).
These analyses may provide information on functional categories
or pathways that are involved in the biological system in question.
Third, perform de novo motif discovery or map the known motifs
to the reported transcription factor binding regions and their
flanking regions. Identify motifs that are enriched in the binding
regions compared to control genomic regions using CisGenome.
These analyses may identify motifs that are recognized by the
transcription factor in question. They may also suggest collaborat-
ing factors. In addition, the motif analysis provides a way to verify
that the reported TFBSs are bona fide signals. For example, if the
ChIP-seq experiment studies a transcription factor and the bind-
ing motif of the transcription factor is known, then the motif is
expected to be enriched in the reported binding regions. If this is
not the case, it may indicate problems in the ChIP-seq experiment
or data analyses. Last but not least, it is always a good idea to visu-
alize the ChIP-seq data along with other structural and functional
annotations of the genome. Both the CisGenome Browser and
the Genome Browser at UCSC (http://genome.ucsc.edu/) (22)
can be used to interactively visualize the data. Interesting patterns
may emerge by simply eye balling the data. These patterns may
create new hypotheses and suggest future research directions.

4. Notes

1. Analysis of experiments with replicate samples. The meth-
ods introduced in this chapter are developed for analyzing
experiments that contain a single replicate. If an experiment
contains more than one replicates, the analysis can be car-
ried out in two steps. First, merge the replicate data into
a combined ChIP sample and a combined control sample
(there will be no control sample in a one-sample experi-
ment). The combined sample can then be analyzed using the
methods described in Section 3. Second, for the reported
peaks, extract read counts from individual replicate sam-
ples. Normalize the read counts by multiplying the raw read
numbers with the normalizing constants obtained using the
approach described in Section 3.2.2. The normalized read
counts can then be analyzed using existing methods devel-
oped for detecting differentially expressed genes in microar-
ray experiments (e.g., limma (23)) to remove regions for
which the observed ChIP enrichment over the controls can
be explained by the random variability among replicates.
Suppose that the normalized read counts are saved in a
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tab-delimited text file named “data.txt,” the R commands
below show how limma can be used to perform the analysis
in the second step.

> library(affy)
> library(limma)
> exprs <- as.matrix(read.table("data.txt",

header =TRUE,
sep="\t", row.names=1, as.is=TRUE))
> exprs <- log2(exprs)
> eset<-new("ExpressionSet", exprs=exprs)
> design<-cbind(Base=1, ChIP=c(1,1,1,0,0,0)) ##

3 ChIP vs.
3 controls
> fit<-lmFit(eset,design)
> fit<-eBayes(fit)

2. An alternative approach to estimate background in a one-
sample experiment. Zhang et al. (15) proposed another
approach to estimate the background Poisson rate. To esti-
mate the rate λi for a genomic window (usually dozens of
base pairs in length), this approach considers a few larger
windows (usually 5 and 10 kb in a one-sample analysis)
surrounding the window in question. λi is estimated using
read occurrence rates derived from these larger windows.
The underlying assumption of this method is that small
windows (with a few dozens of base pairs) close to each
other have similar background read sampling rate and reads
in the larger surrounding windows are mostly background
reads. This is usually a reasonable assumption for analyzing
TFBSs. However, it may not hold true in data which con-
tain broad signals or where signals occur at high frequency
in the genome. When the assumption is true, this method
may provide higher statistical power for detecting signals.

3. An alternative approach to estimate background in a two-
sample experiment. Statistical significance of the observed
enrichment in the ChIP-control comparison can also be
assessed by swapping the sample labels (15). In other words,
one treats the ChIP sample as the control and treats the con-
trol sample as the ChIP. One then applies the same peak
detection procedure to detect “signals” in the label-swapped
data. Any “signals” reported in this analysis should represent
noise. The false discovery rate for a given enrichment level
in the original analysis can be estimated by the ratio {num-
ber of regions reported in the label-swapped data}/ {num-
ber of regions reported in the original data}. This approach
requires that the two samples have about the same num-
ber of background reads in order to produce correct FDR
estimates. If two samples have different number of reads, a
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random subset of reads is usually drawn from the larger sam-
ple to create a subsample that has roughly the same number
of reads as the other sample. Because this procedure excludes
some data from the analysis, it may sacrifice some statistical
power. This procedure attempts to match the total number
of reads between the two samples, which is not equivalent to
matching the number of background reads. In light of dis-
cussions in Section 1.2.2, this may introduce bias into the
FDR estimates. Compared to this approach, the approach
described in Section 3.2.2 does not require the two samples
that have the same read numbers. However, since it depends
on assumptions about the underlying data generating distri-
bution, it may produce biased estimates as well if the model
assumptions do not hold true in the data.

4. Alternative approaches to detect peaks from ChIP-seq data.
Several other methods have been developed for detecting
“enrichment peaks” from ChIP-seq data. QuEST (14) (see
also Chapter 10) uses a kernel density estimation approach
to build density profiles for forward and reverse reads sep-
arately. It then combines the two profiles to detect peaks.
FDR is estimated by dividing the control sample into two
halves and comparing the two subsets of the control. This
requires one to have twice as many reads in the control
sample as in the ChIP sample. SISSRs (16) detects points
in the genome where the net difference between the for-
ward and reverse read counts in a sliding window switches
from positive to negative. It then detects statistically signif-
icant binding sites by using a constant rate Poisson model
to evaluate the enrichment of the total read counts in the
windows surrounding the detected switching points. MACS
(15) uses a sliding window to scan the genome, and uses
a locally estimated Poisson rate to detect enrichment peaks,
as discussed in Note 3. Other methods include FindPeaks
(24), USeq (25), PeakSeq (10), and a ChIP-seq processing
pipeline developed by Kharchenko et al. (11). Currently, rel-
ative performance of various methods has not been bench-
marked. However, for locating TFBSs, all these methods
provide similar spatial resolution (a few dozens of base pairs)
and the difference among them is subtle compared to the
difference between ChIP-chip and ChIP-seq.

5. The choice of window size. The choice of window size
w represents a trade-off between sensitivity and specificity.
When independent information is available, it may be used
to guide the choice of w. For example, in an experiment that
locates TFBSs with known motif(s), one can map the motif
to the reported binding regions and compute the motif
occurrence rates (i.e., the number of motif sites per 1 kb).
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The motif occurrence rate is a measure of signal-to-noise
ratio. It decreases when the window size becomes too small
or too big (9). Motif occurrence rates for regions reported
using different window sizes can be compared and the win-
dow size that maximizes the rate can be selected to gener-
ate the final analysis results. If the transcription factor bind-
ing motif is not known before the study, one may first per-
form de novo motif discovery and use the method described
in (26) to identify the motif. It has been shown that the
approach described in (26) can correctly identify binding
motifs for most genome-wide ChIP studies that involve tran-
scription factors recognizing sequence-specific binding pat-
terns. If one is not able to get the motif information but
gene expression data are available, the window size may also
be chosen based on what fractions of binding regions are
associated with a particular gene expression pattern of inter-
est for different choices of window sizes.
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